Math, asked by Aswatheerth12561, 1 year ago

Y=cos(√3x), than find dy/dx

Answers

Answered by VedaantArya
11

Answer:

-\sqrt{3}sin(\sqrt{3}x)

Step-by-step explanation:

y = cos(\sqrt{3}x)

\frac{dy}{dx} = \frac{dcos(\sqrt{3}x)}{dx} (diff. wrt. x)

\frac{dy}{dx} = -sin(\sqrt{3}x)\frac{d\sqrt{3}x}{dx} (f(g(x))` = f`(g(x))g`(x))

\frac{dy}{dx} = -\sqrt{3}sin(\sqrt{3}x)

Answered by pinquancaro
3

The derivative is  \frac{dy}{dx} = -\sqrt{3}\sin(\sqrt{3}x)

Step-by-step explanation:

Given : Function y=\cos (\sqrt{x})

To find : The derivative dy/dx ?

Solution :

y=\cos (\sqrt{x})

Derivate w.r.t. x,

\frac{dy}{dx} = \frac{d(\cos(\sqrt{3}x))}{dx}

\frac{dy}{dx} = -\sin(\sqrt{3}x)\times \frac{d\sqrt{3}x}{dx}

\frac{dy}{dx} = -\sqrt{3}\sin(\sqrt{3}x)

Therefore, the derivative is  \frac{dy}{dx} = -\sqrt{3}\sin(\sqrt{3}x)

#Learn more

Derivative of dy by dx​

https://brainly.in/question/15709745

Similar questions