Physics, asked by vllblavanyasaini0409, 6 months ago

y = cos(sin x), find dy/dx​

Answers

Answered by chhaya7394
0

Answer:

- cos x.sin(sin x)

Explanation:

dy/dx➖ -sin(sin x).cos x

➖ -cos x.sin(sin x)

Answered by Asterinn
4

Given :

\bf y =  \cos(sin \: x)

To find :

 \bf \:  \dfrac{dy}{dx}

Solution :

 \implies \bf y =  \cos(sin \: x)

Now differentiating both sides :-

\implies \bf \dfrac{dy}{dx} = \dfrac{d(\cos(sin \: x))}{dx}

We know that :-

 \underline{  \boxed  { \bf\dfrac{d(\cos x)}{dx}  =  - sin \: x  }}

using Chain rule :-

\implies \bf \dfrac{dy}{dx} = - \sin(sin \: x) \times  \dfrac{d(sin \: x)}{dx}   \\  \bf \times \dfrac{dx}{dx}

We know that :-

\underline{  \boxed  { \bf\dfrac{d(\sin x)}{dx}  =  cos \: x  }}

\implies \bf \dfrac{dy}{dx} = - \sin(sin \: x) \times  cos \: x   \bf \times 1

\implies \bf \dfrac{dy}{dx} = -cos \: x \:  \sin(sin \: x)

Answer :

 \bf-cos \: x \:  \sin(sin \: x)

Similar questions