Math, asked by hfabcjbh2791, 9 months ago

Y=cos4xcos2x , find dy/dx

Answers

Answered by Stera
2

ANSWER

The required derivative of y or dy/dx is :

-2(cos 4x sin 2x + 2cos 2x sin 4x)

GIVEN

  • y = cos4x.cos2x

TO FIND

  • The derivative of y with respect to x i.e. dy/dx

SOLUTION

 \rm \implies y =   \cos4x \cos2x  \\  \\  \rm \implies  \dfrac{dy}{dx}  =  \dfrac{d}{dx}  \{  \cos4x \cos2x \} \\  \\ \rm \implies \dfrac{dy}{dx}  =   \cos4x \dfrac{d}{dx} ( \cos2x) +   \cos2x \dfrac{d}{dx} ( \cos4x) \\  \\  \rm \implies \dfrac{dy}{dx}  =  \cos4x( -  \sin2x) \dfrac{d}{dx} (2x) +  \cos2x( - \sin4x) \dfrac{d}{dx} (4x) \\  \\  \rm \implies \dfrac{dy}{dx}  = - 2  \cos4x  \sin2x - 4 \cos2x \sin4x  \\  \\  \rm \implies \frac{dy}{dx}  =  - 2( \cos4x \sin2x + 2 \cos2x \sin4x)

Answered by Anonymous
2

Given ,

The function is Y = Cos(4x) × Cos(2x)

We know that , the product rule is given by

 \large \sf \fbox{ \frac{d(u.v)}{dx}  =v \frac{du}{dx}   + u \frac{dv}{dx} }

Thus ,

 \sf \mapsto \frac{dy}{dx}  =  Cos(2x)\frac{Cos(4x)}{dx}  + Cos(4x) \frac{Cos(2x)}{dx}  \\  \\ \sf \mapsto \frac{dy}{dx}  = -  Cos(2x). Sin(4x) \frac{d(4x)}{dx}  + ( - Cos(4x) .Sin(2x) \frac{d(2x)}{x} ) \\  \\ \sf \mapsto \frac{dy}{dx}  =  - 4Cos(2x). Sin(4x)   - 2Cos(4x) .Sin(2x)

Remmember :

 \sf \mapsto  \frac{d(Cos(x) )}{dx}  = -Sin(x) \\  \\  \sf \mapsto  \frac{dx}{dx}  = 1 \\  \\   \sf \mapsto  \frac{d(Constant)}{dx}  = 0

Similar questions