Math, asked by Nabhonil9766, 1 year ago

y=cosx^cosx^cosx....up to infinity

Answers

Answered by vijaychaudhary11
0
I dont know
It's right or wrong
Attachments:
Answered by manissaha129
0

Answer:

y ={{{(\cos(x)) }^{( \cos(x)) } }^{( \cos(x))... \infty  } } \\ y =  { (\cos(x) )}^{y}  \\  log(y)  =  log( { \cos(x) )}^{y} \\  log(y)  = y log( \cos(x) ) \:  \:  \:  ...(i) \\ On \: differentiating \: both \: sides \: of  \: (i)\:w.r.t. \: x, \: we \: get \\ \frac{1}{y}.\frac{dy}{dx}  =  log( \cos(x) )  \frac{dy}{dx}  + y \frac{( -  \sin(x)) }{ \cos(x) }  \\  \frac{1}{y}.\frac{dy}{dx}  = log( \cos(x) )  \frac{dy}{dx}  - y \tan(x)  \\  \frac{dy}{dx}  = y log( \cos(x) )  \frac{dy}{dx}  -  {y}^{2}  \tan(x) \\  \frac{dy}{dx}  - y log( \cos(x) )  \frac{dy}{dx}=  -  {y}^{2}  \tan(x)\\ (1 - y log( \cos(x) ))  \frac{dy}{dx}  =  -  {y}^{2}  \tan(x)  \\  \boxed{\frac{dy}{dx}  = \frac{ -  {y}^{2} \tan(x) }{(1 -y log( \cos(x) )) } }✓

Similar questions