Math, asked by rakshitdixit21, 1 year ago

Y = -cot^2 X/2 - 2log sin X/2 prove that dy/dx = cot ^3 x/2

Answers

Answered by MaheswariS
2

\textbf{Given:}

\mathsf{y=-cot^2\frac{x}{2}-2\;log\,sin\frac{x}{2}}

\textbf{To find:}

\mathsf{\dfrac{dy}{dx}}

\textbf{Solution:}

\textsf{We apply chain rule to find the derivative}

\mathsf{Consider,}

\mathsf{y=-cot^2\frac{x}{2}-2\;log\,sin\frac{x}{2}}

\textsf{Differentiate with respect to 'x'}

\mathsf{\dfrac{dy}{dx}=-2\,cot\frac{x}{2}\,\left(-cosec^2\frac{x}{2}\right)\frac{1}{2}-2\;\left(\dfrac{1}{sin\frac{x}{2}}\right)cos\frac{x}{2}\;\frac{1}{2}}

\mathsf{\dfrac{dy}{dx}=cot\frac{x}{2}\,\left(cosec^2\frac{x}{2}\right)-\left(\dfrac{1}{sin\frac{x}{2}}\right)cos\frac{x}{2}}

\mathsf{\dfrac{dy}{dx}=cot\frac{x}{2}\,\left(cosec^2\frac{x}{2}\right)-\left(\dfrac{cos\frac{x}{2}}{sin\frac{x}{2}}\right)}

\mathsf{\dfrac{dy}{dx}=cot\frac{x}{2}\,\left(cosec^2\frac{x}{2}\right)-cot\frac{x}{2}}

\mathsf{\dfrac{dy}{dx}=cot\frac{x}{2}(cosec^2\frac{x}{2}-1)}

\mathsf{\dfrac{dy}{dx}=cot\frac{x}{2}(cot^2\frac{x}{2})}

\implies\boxed{\mathsf{\dfrac{dy}{dx}=cot^3\frac{x}{2}}}

\textbf{Find more:}

1.Y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

https://brainly.in/question/3429497

2.If y=√x+1/√x show that 2x d y /dx +y =2√x

https://brainly.in/question/5156094

3.If y = tan^–1(sec x + tan x), then find dy/dx.

https://brainly.in/question/8085217

4.If y= log tan(π/4+x/2),show that dy/dx=secx

https://brainly.in/question/5012403

5.Differentiate w. r. t.x.

(x^3-2x-1)^5

​https://brainly.in/question/16682392

Similar questions