Math, asked by parthabarman9999, 1 day ago

y=(cotx)^sinx+(tanx)^cosx.find its dy/dx.​

Answers

Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given function is

\rm \: y =  {(cotx)}^{sinx} +  {(tanx)}^{cosx}  \\

Let assume that

\rm \: y =  u +  v  \\

where,

\rm \: u = {(cotx)}^{sinx} -  -  - (1)

and

\rm \: v = {(tanx)}^{cosx} -  -  - (2)

So,

\rm \: \dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx}  -  -  -  - (3)\\

Now, Consider

\rm \: u = {(cotx)}^{sinx}

On taking log on both sides, we get

\rm \:log u = log{(cotx)}^{sinx}

can be rewritten as

\rm \:log u = sinx \: logcotx

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}log u = \dfrac{d}{dx}[sinx \: logcotx]

\rm \: \dfrac{1}{u}\dfrac{du}{dx} = sinx\dfrac{d}{dx}logcotx + logcotx\dfrac{d}{dx}sinx

\rm \: \dfrac{1}{u}\dfrac{du}{dx} = sinx \times \dfrac{1}{cotx}( -  {cosec}^{2} x) + logcotx \times cosx \\

\rm \: \dfrac{du}{dx} =u[  - secx \:  +  \: cosx \: logcotx]  \\

\rm\implies \:\: \dfrac{du}{dx} ={(cotx)}^{sinx}[  - secx \:  +  \: cosx \: logcosx] -  - (4)  \\

Now, Consider

\rm \: v = {(tanx)}^{cosx}

On taking log on both sides, we get

\rm \:log v =log {(tanx)}^{cosx}

\rm \:log v =cosx \: log {(tanx)}

On differentiating both sides w. r. t. x, we get

\rm \:\dfrac{d}{dx}log v =\dfrac{d}{dx}[cosx \: log {(tanx)}]

\rm \: \dfrac{1}{v}\dfrac{dv}{dx} = cosx\dfrac{d}{dx}log(tanx) + log(tanx)\dfrac{d}{dx}cosx

\rm \: \dfrac{1}{v}\dfrac{dv}{dx} = cosx \times \dfrac{1}{tanx} \times  {sec}^{2}x  + log(tanx)( - sinx)

\rm \: \dfrac{dv}{dx} = v[cosecx - sinx \:  log(tanx)]

\rm\implies \: \dfrac{dv}{dx} = {(tanx)}^{cosx}[cosecx - sinx \:  log(tanx)] -  -  - (5) \\

So, on substituting the values from equation (4) and (5) in equation (3), we get

\rm \: \dfrac{dy}{dx} = {(cotx)}^{sinx}[  - secx \:  +  \: cosx \: logcosx] + {(tanx)}^{cosx}[cosecx - sinx \:  log(tanx)] \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULAE USED

\rm \:  \: \dfrac{d}{dx}tanx =  {sec}^{2}x \\

\rm \:  \: \dfrac{d}{dx}cotx =  -  {cosec}^{2}x \\

\rm \:  \: \dfrac{d}{dx}sinx = cosx \\

\rm \:  \: \dfrac{d}{dx}cosx =  - sinx \\

\rm \:  \: \dfrac{d}{dx}logx =  \dfrac{1}{x}  \\

\rm \: log {x}^{y} \:  =  \: y \: logx \\

\rm \: \dfrac{d}{dx}uv = v\dfrac{d}{dx}u \:  +  \: u\dfrac{d}{dx}v

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions