y+dy/dx(1+x^2) tan^-1x
Answers
Answered by
4
Answers
dy / dx + y / ( 1 + x^2 ) = [ 1 / ( 1 + x^2 ) ] e^( arctan x )
e^(arctan x ) * dy / dx + e^( arctan x ) y / ( 1 + x^2 ) = [ 1 / ( 1 + x^2 ) ]* e^( 2 arctan x )
e^( arctan x ) y = ( 1 /2 )e^(2 arctan x ) + C
y = ( 1 / 2 ) + Ce^( - 2arctan x )
dy / dx + y / ( 1 + x^2 ) = [ 1 / ( 1 + x^2 ) ] e^( arctan x )
e^(arctan x ) * dy / dx + e^( arctan x ) y / ( 1 + x^2 ) = [ 1 / ( 1 + x^2 ) ]* e^( 2 arctan x )
e^( arctan x ) y = ( 1 /2 )e^(2 arctan x ) + C
y = ( 1 / 2 ) + Ce^( - 2arctan x )
Similar questions