Math, asked by priyanka156, 1 year ago

y=e^√cotx find dy/dx

Answers

Answered by Anant02
21
here is the answer..........
Attachments:
Answered by hukam0685
12

Answer:

  \frac{d {e}^{ \sqrt{cot \: x} } }{dx} = \frac{ -  {cosec}^{2}x \: . {e}^{ \sqrt{cot \: x} }  }{2 \sqrt{cot \: x} }  \\

Step-by-step explanation:

We know that

 \frac{d[ {e}^{f(x)}] }{dx}  =  {e}^{f(x)}  \frac{df(x)}{dx}  \\  \\

So

y =  {e}^{ \sqrt{cot \: x} }  \\  \\  \frac{dy}{dx}  = \frac{d{e}^{ \sqrt{cot \: x} }}{dx} \\  \\  = {e}^{ \sqrt{cot \: x} } \frac{d( \sqrt{cot \: x} )}{dx}  \\  \\   = {e}^{ \sqrt{cot \: x} } \frac{1}{2 \sqrt{cot \: x} }  \frac{d(cot \: x)}{dx}  \\  \\ =  {e}^{ \sqrt{cot \: x} } \frac{1}{2 \sqrt{cot \: x} } ( -  {cosec}^{2} x) \\  \\ \frac{d {e}^{ \sqrt{cot \: x} } }{dx} =  \frac{ -  {cosec}^{2}x \: . {e}^{ \sqrt{cot \: x} }  }{2 \sqrt{cot \: x} }  \\

Hope it helps you.

Similar questions