y=e^sinx+3 then dy/dx is?
Ans: cosx e^sinx
I want the steps plzz.....
Answers
Answered by
1
y = e^sinx + 3
we know, if any function y = e^f(x) given then differentiation of it e^f(x).df(x)/dx
use this concept here,
y = e^sinx + 3
differentiate with respect to x
dy/dx = e^sinx .d(sinx).dx + d(3)/dx
dy/dx = e^sinx .cosx + 0 { differentiation of constant is always equal zero }
so, dy/dx = e^sinx.cosx
we know, if any function y = e^f(x) given then differentiation of it e^f(x).df(x)/dx
use this concept here,
y = e^sinx + 3
differentiate with respect to x
dy/dx = e^sinx .d(sinx).dx + d(3)/dx
dy/dx = e^sinx .cosx + 0 { differentiation of constant is always equal zero }
so, dy/dx = e^sinx.cosx
Similar questions