Math, asked by ourrishita, 10 months ago

Y = e^x log tan 2x , find dy/dx

Answers

Answered by rishu6845
19

Answer:

 {e}^{x}  \: ( \: 4 \: cosec4x + log \: tan2x \: )

Step-by-step explanation:

To find ---->

derivative \: of \:  \\ y \:  =  {e}^{x}  \:  \: log  \: tan2x

Concept used ---->

1)

 \dfrac{d}{dx} \: (u \: v    ) =u \:  \dfrac{dv}{dx}   \:  + v \:  \dfrac{du}{dx}

2)

 \dfrac{d}{dx} \: ( {e}^{x} )  =  {e}^{x}  \\\\  \dfrac{d}{dx} (logx) =  \dfrac{1}{x}  \\ \\ \dfrac{d}{dx} (tanx) =  {sec}^{2} x

3)

sin2x = 2 \: sinx \: cosx

Solution---->

y \:  =  {e}^{x}  \: log \: tan2x

differentiating \: with \: respect \: to \: x

 \dfrac{dy}{dx}  \:  =  {e}^{x} \dfrac{d}{dx} (logtan2x) + logtan2x \:  \dfrac{d}{dx} ( {e}^{x}  )

 =  {e}^{x}  \:  \dfrac{1}{tan2x}  \:  \dfrac{d}{dx} (tan2x) \:  + logtan2x \:  {e}^{x}

 =  \dfrac{ {e}^{x} \:  {sec}^{2}2x \:  \dfrac{d}{dx} (2x)  }{tan2x}  \:  +  {e}^{x}  \: logtan2x

 =  {e}^{x} ( \dfrac{2 {sec}^{2}2x }{tan2x}  \:  + logtan2x \: )

 =  {e}^{x} ( \dfrac{ \dfrac{2}{ {cos}^{2}2x } }{ \dfrac{sin2x}{cos2x} }  \:  + logtan2x \: )

 =   {e}^{x} ( \dfrac{2}{sin2x \: cos2x}  \:  + logtan2x \: )

 =  {e}^{x}  \: (  \: \dfrac{4}{2sin2x \: cos2x} +  \: logtan2x \: )

 =  {e}^{x}  \: ( \:  \dfrac{4}{sin4x \:  }  +  \: logtan2x \: )

 =  {e}^{x}  \: ( \: 4 \: cosec4x \:  + logtan2x \: )

Answered by Anonymous
7

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions