Math, asked by rose92504, 24 days ago

y=e^x sinx show that y''-2y'+2y'=0
(plz answer this one)​

Answers

Answered by mathdude500
1

Appropriate Question

\rm :\longmapsto\:If \: y =  {e}^{x}sinx ,\: show \: that \: y'' - 2y' + 2y = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y =  {e}^{x} \: sinx  -  -  - (1)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}{e}^{x} \: sinx

We know

\boxed{ \sf{ \:\dfrac{d}{dx}uv = u\dfrac{d}{dx}v \: +   \: v\dfrac{d}{dx}u}}

On applying this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = {e}^{x}\dfrac{d}{dx}sinx + sinx\dfrac{d}{dx}{e}^{x}

We know,

\boxed{ \sf{ \:\dfrac{d}{dx}{e}^{x} = {e}^{x}}}

and

\boxed{ \sf{ \:\dfrac{d}{dx}sinx = cosx}}

On applying these,

\rm :\longmapsto\:y'= {e}^{x} \: cosx + sinx \: {e}^{x}

\rm :\longmapsto\:y'= {e}^{x} \: cosx + y  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \{using \: (1) \}

\rm :\implies\:y' = {e}^{x}cosx + y -  -  - (2)

On differentiating w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y' = \dfrac{d}{dx}{e}^{x} \: cosx \:  + \dfrac{d}{dx}y

\rm :\longmapsto\:y'' = {e}^{x}\dfrac{d}{dx}cosx + cosx\dfrac{d}{dx}{e}^{x} + y'

\rm :\longmapsto\:y'' =  - {e}^{x}sinx + cosx \: {e}^{x} + y'

\rm :\longmapsto\:y'' =  - y +  \red{cosx \: {e}^{x}} + y' \:  \:  \:  \:  \:  \{ \: using \: (1) \}

\rm :\longmapsto\:y'' =  - y + y' - y + y'

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \: y' = {e}^{x}cosx + y\bigg \}}

\rm :\longmapsto\:y'' =  - 2y + 2y'

\bf :\longmapsto\:y''  -  2y'  +  2y = 0

Hence, Proved

Similar questions