Y equal to root of 1 - sin 2x by 1 + sin 2x prove that dy by dx +
Answers
Note cos(π/4 - x) = cos(π/4 ) * cos(x) + sin(π/4 ) * sin(x)
= (cos(x) + sin(x))/√(2)
cos2(π/4 - x) = (cos(x) + sin(x))2/2
= (cos2(x) + sin2(X) + 2*cos(x)*sin(x))/2
= (1 + sin(2x))/2
From this sec2(π/4 - x) = 2/(1 + sin(2x))
Also, 1 - sin(2x) = sin2(x) + cos2(x) - 2*sin(x)*cos(x)
= (cos(x) - sin(x))2
Similarly, 1 + sin(2x) = (cos(x) + sin(x))2
Also (1 - sin(2x))/(1 + sin(2x)) = ((cos(x) - sin(x))/(cos(x) + sin(x)))2
= ((cos(x) - sin(x))*(cos(x) + sin(x))/(cos(x) + sin(x))2)2
= ((cos2(x) - sin2(x))/(1 + sin(2x)))2
= (cos(2x)/(1 + sin(2x)))2
Now y =√((1 - sin(2x))/(1 + sin(2x)))
= √((cos(2x)/(1 + sin(2x)))2)
= cos(2x)/(1 + sin(2x))
Take the derivative:
y' = -2sin(2x)/(1 + sin(2x)) + cos(2x) (-1)(2cos(2x))/(1 + sin(2x))2
= -2/(1 + sin(2x))2*(sin(2x)*(1 + sin(2x)) + cos2(2x))
= -2/(1 + sin(2x))2*(sin(2x) + sin2(2x) + cos2(2x))
= -2/(1 + sin(2x))2*(1 + sin(2x))
= -2/(1 + sin(2x))
= -sec2(π/4 - x), from the identity above