Math, asked by Anmolchaudhari, 4 months ago

y=ex. log x find
dy dx​

Answers

Answered by aryan073
10

Given:

\purple\bigstar\bf{y=e^x logx}

To find :

\blue\bigstar\rm{\dfrac{dy}{dx} =?}

Differentation:

 \\  \red \bigstar \sf \:  \frac{dy}{dx} =  {e}^{x}   =  {e}^{x}

 \\  \red \bigstar \sf \:  \frac{dy}{dx}  = logx =  \frac{1}{x}

Solution :

\\  \implies \large \sf \: y =  {e}^{x}  \times  logx \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \green\large  \underline {\sf \: by \: using \: chain \: rule} \\    \\  \implies\large \sf \: \frac{ dy}{dx}  =  {e}^{x}  \frac{dy}{dx} logx +  \frac{dy}{dx}  {e}^{x} logx \\  \\  \implies\large \sf \:  \frac{dy}{dx}  =    \frac{ {e}^{x} }{x}  \times 1 +   {e}^{x} logx \\  \\  \implies\large \boxed{ \sf{ \frac{dy}{dx}  =  \frac{ {e}^{x} }{x}  +  {e}^{x} logx}}

Additional information :

For solving differentiation we use product rule, quotient rule, and chain rule

Consider the value y=uv

Product rule:

\red\bigstar\boxed{\sf{\dfrac{dy}{dx} =u\dfrac{dv}{dx}v+\dfrac{du}{dx} u v}}

Consider the value y=v/u

Quotient Rule:

\red\bigstar\boxed{\sf{\dfrac{dy}{dx} =\dfrac{u \dfrac{dv}{dx} v - \dfrac{du}{dx}uv}{u^2}}}

Consider the value y=u²v²

Chain rule :

\red\bigstar\boxed{\sf{\dfrac{dy}{dx} =2u \dfrac{du}{dx}v² \times 2v \dfrac{dv}{dx}}}

Answered by ginjalasripal
2

Step-by-step explanation:

I hope it help you

d logx/dX=1/x

Attachments:
Similar questions