Math, asked by manpreet0915071, 1 month ago

Y=f(x)=5x-3/3x-5, show that f(y) =x

Answers

Answered by TrustedAnswerer19
7

Answer:

Given,

 \sf \: y = f(x) =  \frac{5x - 3}{3x - 5} \\   \sf \therefore \: \:  \:  \:  y =  \frac{5x - 3}{3x - 5}  \\  \sf \implies \: y(3x - 5) = 5x - 3 \\ \sf \implies \: 3xy - 5y = 5x  - 3 \\ \sf \implies \: 3xy - 5x = 5y - 3 \\ \sf \implies \: x(3y - 5) = 5y - 3 \\ \sf \implies \: x =  \frac{5y - 3}{3y - 5}  \:  \:  \:  \:  \:  -  -  -  -  (1) \\  \\ \bf again \:  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: f(x) =  \frac{5x - 3}{3x - 5}  \\ \sf \implies \: f(y) =  \frac{5y - 3}{3y - 5} \:  \:  \:  \:  \:  -  -  -  - (2)  \\  \\  \sf \: by \: comparing \: eqn.(1) \:  \: and \:  \: eqn.(2) \\  \sf \: we \: can \: write \: that \:,  \\  \\  \sf \: f(y) =  \frac{5y - 3}{3y - 5}  = x \\  \sf \therefore \: f(y) = x \\  \\ \huge\red{ \underline{\green{ ( \sf \: hence \: showed)}}}

Similar questions