Math, asked by ishanarayankar, 2 months ago

y=f(x)=x-5/5x-1 then show that f(y)=x​

Answers

Answered by MaheswariS
6

\textbf{Given:}

\mathsf{y=f(x)=\dfrac{x-5}{5x-1}}

\textbf{To show:}

\mathsf{f(y)=x}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{f(y)}

\mathsf{=f\left(\dfrac{x-5}{5x-1}\right)}

\mathsf{=\dfrac{\dfrac{x-5}{5x-1}-5}{5\left(\dfrac{x-5}{5x-1}\right)-1}}

\mathsf{=\dfrac{\dfrac{x-5-5(5x-1)}{5x-1}}{\left(\dfrac{5(x-5)}{5x-1}\right)-1}}

\mathsf{=\dfrac{\dfrac{x-5-25x+5}{5x-1}}{\left(\dfrac{5x-25}{5x-1}\right)-1}}

\mathsf{=\dfrac{\dfrac{-24x}{5x-1}}{\dfrac{5x-25-(5x-1)}{5x-1}}}

\mathsf{=\dfrac{\dfrac{-24x}{5x-1}}{\dfrac{5x-25-5x+5}{5x-1}}}

\mathsf{=\dfrac{\dfrac{-24x}{5x-1}}{\dfrac{-24}{5x-1}}}

\mathsf{=\dfrac{-24x}{5x-1}{\times}\dfrac{5x-1}{-24}}

\mathsf{=x}

\implies\boxed{\mathsf{f(y)=x}}

Similar questions