Math, asked by rehankhan88, 10 months ago


y = I - tanx/
1+ tanx
Differentiate with repect to x.​

Answers

Answered by sprao53413
1

Answer:

Please see the attachment

Attachments:
Answered by anu24239
8

\huge\mathfrak\red{Answer}

y =  \frac{1 - tanx}{ 1+tanx }  \\ y =  \frac{tan45 - tanx}{1 + tan45.tanx}  \\ as \: we \: know \: that \\  \tan( \alpha   - \beta )  =  \frac{ \tan( \alpha )   -  \tan( \beta ) }{1 +  \tan( \alpha ) . \tan( \beta ) }  \\  \\ so \: similiarly \\  \tan(45 - x)  =  \frac{ \tan45 -  tanx }{1 +  \tan 45.tanx}  \\  \\ so \: now \:  we \: got \:  \\ y =  \tan(45 - x)  \\  \frac{dy}{dx}  =  \frac{d(tan(45 - x))}{dx}  \\  \frac{dy}{dx}  = {sec}^2(45 - x) \frac{d(45 - x)}{dx}  \\  \frac{dy}{dx}  =  (- 1){sec}^2(45 - x) \\  \\  |answer|  =  -{\sec}^2(45 - x)

Similar questions