Physics, asked by Anonymous, 8 months ago

☞︎︎︎ ᑭᕼYՏIᑕՏ ᑫᑌᗴՏTIOᑎ :-

➪ A ʙᴏᴅʏ ɪs ᴍᴏᴠɪɴɢ ᴜɴᴅɪʀᴇᴄᴛɪᴏɴᴀʟʟʏ ᴜɴᴅᴇʀ ᴛʜᴇ ɪɴғʟᴜᴇɴᴄᴇ ᴏғ ᴀ sᴏᴜʀᴄᴇ ᴏғ ᴄᴏɴsᴛᴀᴀɴᴛ ᴘᴏᴡᴇʀ. ɪᴛs ᴅɪsᴘʟᴀᴄᴇᴍᴇɴᴛ ɪɴ ᴛɪᴍᴇ ᴛ ɪs ᴘʀᴏᴘᴏʀᴛɪᴏɴᴀʟ ᴛᴏ -

a) t^{ \frac{1}{2}}

b) t

c) t^{ \frac{3}{2}}

d) t^{2}

Answers

Answered by BrainlyTornado
6

ANSWER:

  • Displacement S is directly proportional to t^(3/2)

GIVEN:

  • A body is moving unidirectionally under the influence of a source of constant power.

TO FIND:

  • The displacement in time t.

EXPLANATION:

The body is moving unidirectionally under the influence of a source of constant power.

P = constant

 \boxed{ \bold{ \large{ \gray{P = F  \times  v }}}}

 \boxed{ \bold{ \large{ \gray{F = ma }}}}

P = ma × v

 \boxed{ \bold{ \large{ \gray{v = u + at }}}}

u = 0

v = 0 + at

v = at

We know that P = ma × v

P = ma(at)

P = ma²t

 \sf  {a}^{2}  = \dfrac{P}{mt}

 \sf a =  \sqrt{ \dfrac{P}{mt}}

 \boxed{ \bold{ \large{ \gray{S = ut + \dfrac{1}{2} a {t}^{2} }}}}

u = 0

 \sf a =  \sqrt{ \dfrac{P}{mt}}

 \sf S = 0(t) + \dfrac{1}{2}\times  \sqrt{ \dfrac{P}{mt}} \ {t}^{2}

 \sf S = \dfrac{1}{2}\times  \sqrt{ \dfrac{P}{m}} \ \dfrac{{t}^{2}}{{t}^{1\!/\!2} }

 \sf S = \dfrac{1}{2}\times  \sqrt{ \dfrac{P}{m}} \ {t}^{2 - 1\!/\!2}

 \sf S = \dfrac{1}{2}\times  \sqrt{ \dfrac{P}{m}} \ {t}^{3\!/\!2}

 \sf S\ \propto \ {t}^{3\!/\!2}

Hence displacement S is directly proportional to t^(3/2).

Similar questions