y = ktan^-1(kx) find dy/dx
Answers
Answered by
4
Answer:
k²/(1 + k²x²)
Step-by-step explanation:
⇒ y = ktan⁻¹ (kx)
Differentiate with respect to x:
⇒ dy/dx = d(k tan⁻¹ (kx))/dx
⇒ y' = k d( tan⁻¹(kx) )/dx
Using chain rule,
⇒ y' = k d( tan⁻¹(kx) )/d(kx) × d(kx)/dx
⇒ y' = k [ 1/(1 + (kx)² ] × (k × 1)
⇒ y' = k²/(1 + k²x²)
Similar questions