Math, asked by sousamerciana18, 25 days ago

y=log(secx) find d⁴y/dx⁴​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y = log(secx)

\large\underline{\sf{To\:Find - }}

\boxed{ \sf{\rm :\longmapsto\: \:\dfrac{ {d}^{4} y}{ {dx}^{4} }}}

\begin{gathered}\Large{ \sf{{\underline{Formula \: Used - }}}}  \end{gathered}

\underbrace{\boxed{ \tt{ \dfrac{d}{dx}logx =  \frac{1}{x} \: }}}

\underbrace{\boxed{ \tt{ \dfrac{d}{dx}secx = secx \: tanx\: }}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}tanx =  {sec}^{2}x  \: }}}

\underbrace{\boxed{ \tt{ \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} }}}

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:y = log(secx)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} log(secx)

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx}\dfrac{d}{dx}secx

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{1}{secx}(secx \: tanx)

\bf\implies \:\dfrac{dy}{dx} = tanx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \:\dfrac{d}{dx}\dfrac{dy}{dx} = \dfrac{d}{dx}tanx

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{d {x}^{2} } =  {sec}^{2}x

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{ {d}^{2}y }{d {x}^{2} } =  \dfrac{d}{dx}{sec}^{2}x

\rm :\longmapsto\:\dfrac{ {d}^{3}y }{d {x}^{3} } =  2{sec}x \: \dfrac{d}{dx}secx

\rm :\longmapsto\:\dfrac{ {d}^{3}y }{d {x}^{3} } =  2{sec}x \: (secx \: tanx)

\rm :\longmapsto\:\dfrac{ {d}^{3}y }{d {x}^{3} } =  2 \:  {sec}^{2}x  \: tanx

We know,

\underbrace{\boxed{ \tt{ {sec}^{2}x  \:  =  \: 1 +  {tan}^{2}x }}}

So, using this

\rm :\longmapsto\:\dfrac{ {d}^{3}y }{d {x}^{3} } =  2 \:  (1 + {tan}^{2}x)  \: tanx

\rm :\longmapsto\:\dfrac{ {d}^{3}y }{d {x}^{3} } =  2 \:  (tanx + {tan}^{3}x)

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}\dfrac{ {d}^{3}y }{d {x}^{3} } = \dfrac{d}{dx} 2 \:  (tanx + {tan}^{3}x)

\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \:  (\dfrac{d}{dx}tanx + \dfrac{d}{dx}{tan}^{3}x)

\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \: \bigg( {sec}^{2}x + 3 {tan}^{2}x\dfrac{d}{dx}tanx  \bigg)

\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \: \bigg( {sec}^{2}x + 3 {tan}^{2}x {sec}^{2}x \bigg)

 \red{ \boxed{\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \:  {sec}^{2}x \:  \bigg( 1 + 3 {tan}^{2}x\bigg) \quad}}

or

in further evaluation we get

We know,

\underbrace{\boxed{ \tt{ {sec}^{2}x  \:   -  \: {tan}^{2}x  \:  =  \: 1}}}

So, using this

\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \:  {sec}^{2}x \:  \bigg(  {sec}^{2}x -  {tan}^{2}x + 3 {tan}^{2}x\bigg)

\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \:  {sec}^{2}x \:  \bigg(  {sec}^{2}x  + 2 {tan}^{2}x\bigg)

 \red{ \boxed{\rm :\longmapsto\:\dfrac{ {d}^{4}y }{d {x}^{4} } =  2 \:  {sec}^{4}x \:   +4\:  {sec}^{2}x \: {tan}^{2}x \quad}}

Additional Information :-

\underbrace{\boxed{ \tt{\dfrac{d}{dx}sinx\:  =  \: cosx}}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}cosx\:  =  \:  -  \: sinx}}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}cotx \:  =  \:  -  \:  {cosec}^{2}x }}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}cosecx \: =  -  \: cosecx \: cotx }}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}k \:  =  \: 0}}}

\underbrace{\boxed{ \tt{\dfrac{d}{dx}x \:  =  \: 1}}}

Similar questions