y=log(secx +tanx) differtiate with respect to sec x where x=π/4
Answers
Answered by
1
Answer: y'=sec(x)
Full explanation:
Suppose, y=ln(f(x))
Using chain rule, y'=1f(x)⋅f'(x)
Similarly, if we follow for the problem, then
y'=1sec(x)+tan(x)⋅(sec(x)+tan(x))'
y'=1sec(x)+tan(x)⋅(sec(x)tan(x)+sec2(x))
y'=1sec(x)+tan(x)⋅sec(x)(sec(x)+tan(x))
y'=sec(x)
Full explanation:
Suppose, y=ln(f(x))
Using chain rule, y'=1f(x)⋅f'(x)
Similarly, if we follow for the problem, then
y'=1sec(x)+tan(x)⋅(sec(x)+tan(x))'
y'=1sec(x)+tan(x)⋅(sec(x)tan(x)+sec2(x))
y'=1sec(x)+tan(x)⋅sec(x)(sec(x)+tan(x))
y'=sec(x)
Similar questions
Math,
6 months ago
Environmental Sciences,
1 year ago
World Languages,
1 year ago
Math,
1 year ago
Math,
1 year ago