Math, asked by bhaveshdhade, 1 month ago

y=log(sin(tanx))
y = log(sin(tanx))  \: find  \frac{dy}{dx}

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y = log\bigg[sin(tanx)\bigg]

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} log\bigg[sin(tanx)\bigg]

We know,

 \red{\boxed{ \sf \:\dfrac{d}{dx}logx =  \frac{1}{x}}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{1}{sin(tanx)} \: \dfrac{d}{dx} \: sin(tanx)

We know,

 \red{\boxed{ \sf \:\dfrac{d}{dx}sinx =  cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  \dfrac{1}{sin(tanx)} \: \times \: cos(tanx) \: \dfrac{d}{dx} \: tanx

We know,

 \red{\boxed{ \sf \:\dfrac{d}{dx}tanx =   {sec}^{2}x}}

So, using we get

\rm :\longmapsto\:\dfrac{dy}{dx} = cot(tanx) \times  {sec}^{2}x

Hence,

 \red{\rm :\longmapsto\:\boxed{ \sf  \:  \:  \:  \:  \: \:\dfrac{dy}{dx} = cot(tanx) \times {sec}^{2}x \:  \:  \:  \:  \:  \: }}

Additional Information :-

 \red{\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}}

Similar questions