y=log (sqrt x+sqrt x-a)then dy/dx is
Answers
/* Differentiating with respect to 'x' on bothsides of the equation, we get */
•••♪
Giveny=log(
x
+
x−a
)
/* Differentiating with respect to 'x' on bothsides of the equation, we get */
\frac{d}{dx}(y) = \frac{d}{dx} [ log (\sqrt{x} + \sqrt{x-a}]
dx
d
(y)=
dx
d
[log(
x
+
x−a
]
= \frac{1}{ (\sqrt{x} + \sqrt{x-a}) } \times \frac{d}{dx} (\sqrt{x} + \sqrt{x-a})=
(
x
+
x−a
)
1
×
dx
d
(
x
+
x−a
)
\boxed{\pink{ \because \frac{d}{dx} \{ log [f(x)]\} = \frac{1}{f(x)} \frac{d}{dx} [f(x)] }}
∵
dx
d
{log[f(x)]}=
f(x)
1
dx
d
[f(x)]
= \frac{1}{ (\sqrt{x} + \sqrt{x-a}) } \times [ \frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{x-a}} ]=
(
x
+
x−a
)
1
×[
2
x
1
+
2
x−a
1
]
= \cancel {\frac{1}{ (\sqrt{x} + \sqrt{x-a}) }} \times \frac{1}{2} [ \frac{\cancel {\sqrt{x-a}+ \sqrt{x}}}{\sqrt{x}\times (\sqrt{x-a})}]=
(
x
+
x−a
)
1
×
2
1
[
x
×(
x−a
)
x−a
+
x
]
= \frac{1}{2\sqrt{x}(\sqrt{x-a})}=
2
x
(
x−a
)
1
\green {= \frac{1}{2\sqrt{x^{2} - ax}} }=
2
x
2
−ax
1