Math, asked by Dreamer01, 11 months ago

y=log (x^2+3), Find dy/dx​

Answers

Answered by Aditi123maini
3

Step-by-step explanation:

hope it helps you .....

Attachments:
Answered by kaushik05
21

 \huge \red{ \mathfrak{solution}}

Given:

y =  log( {x}^{2} + 3 )

To find:

 \frac{dy}{dx}

Here we use chain rule ,

 \leadsto \:  \frac{d}{dx}  log( {x}^{2}  + 3)   \times  \frac{d}{dx} (x^{2}  + 3) \\  \\  \leadsto \:  \frac{1}{ {x}^{2} + 3 }  \times( 2x + 0) \\  \\  \leadsto \:  \frac{2x}{ {x}^{2} + 3 }

Formula used :

 \boxed{ \green{ \bold{ \frac{d}{dx}  log(x)  =  \frac{1}{x} }}}

  \boxed{ \purple{ \bold{\frac{d}{dx}  {x}^{y}  = y {x}^{y - 1} }}}

Similar questions