Math, asked by dogloverbuddy2005, 8 months ago

y=(log x)^3 dy/dx= Don't give absurd answers to like 1) Check in google

Answers

Answered by shadowsabers03
2

Chain rule states that,

\displaystyle\longrightarrow\sf{y=f(g(x))}

\displaystyle\Longrightarrow\sf{\dfrac {dy}{dx}=\dfrac {d\,[f(g(x))]}{d\,[g(x)]}\cdot\dfrac {d\,[g(x)]}{dx}}

In the question,

\displaystyle\longrightarrow\sf{y=(\log x)^3\quad\quad\dots (1)}

Let,

\displaystyle\longrightarrow\sf{u=\log x}

\displaystyle\longrightarrow\sf{\dfrac {du}{dx}=\dfrac {1}{x}}

Then (1) becomes,

\displaystyle\longrightarrow\sf{y=u^3}

Differentiating wrt \displaystyle\sf {x,}

\displaystyle\longrightarrow\sf{\dfrac {dy}{dx}=\dfrac {d\,\left[u^3\right]}{dx}}

By chain rule,

\displaystyle\longrightarrow\sf{\dfrac {dy}{dx}=\dfrac {d\,\left[u^3\right]}{du}\cdot\dfrac {du}{dx}}

\displaystyle\longrightarrow\sf{\dfrac {dy}{dx}=3u^2\cdot\dfrac {du}{dx}}

\displaystyle\longrightarrow\sf{\dfrac {dy}{dx}=3(\log x)^2\cdot\dfrac {1}{x}}

\displaystyle\longrightarrow\underline {\underline {\sf{\dfrac {dy}{dx}=\dfrac {3(\log x)^2}{x}}}}

Similar questions