Math, asked by lerooyngwenya13, 4 months ago

y=mx+c find the value when m=-2 x=-7 c=-3

Answers

Answered by CopyThat
8

Given

  • m = -2
  • x = -7
  • c = -3

To find

  • y = mx + c (general form of a straight line)
  • To find y

Solution

  • y = mx + c
  • y = (-2)(-7) + (-3)
  • y = +14-3
  • y = 11

∴ The value of y in y = mx + c where m is -2, x is -7,c is -3 is 11

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{y \:  = mx \:  + c} \\ &\sf{m \:  =  \:  - 2}\\ &\sf{x \:  =  - 7}\\ &\sf{c \:  =  - 3} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{value \: of \: y}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

 \blue{\tt \:  according \: to \: statement}

\tt \:  \longrightarrow \: y \:  =  \: mx \:  +  \: c

☆ On substituting m = - 2, x = - 7 and c = - 3, we get

\tt \:  \longrightarrow \: y \:  =  \: ( - 2) \times ( - 7) + ( - 3)

\tt \:  \longrightarrow \: y \:  =  \: 14 - 3

\tt\implies \: \boxed{ \purple{\tt \:  y \:  =  \: 11}}

Similar questions