Math, asked by pandeykavita11655, 1 month ago

y one zero of the polynomial x² - 4x + 1 is
2 + √3 write the other Zero​

Answers

Answered by BrainlyRish
16

Appropriate Question :

  • One zero of the polynomial x² - 4x + 1 is 2 + √3 . Write the other Zero .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider \alpha \:\:\& \:\:\beta \:\: be the two zeroes of Polynomial x² - 4x + 1 .

Given :

  • Polynomial : x² - 4x + 1

There Cofficient :

  • Cofficient of x² = 1
  • Cofficient of x = -4
  • Constant Term = 1

&

  • \alpha = 2 + √3

\dag\:\:\it{ As,\:We\:know\:that\::}\\\bf Sum \:of\:Roots\:: \\

\qquad \dag\:\:\bigg\lgroup \sf{ \alpha + \beta = \dfrac{-(Cofficient \:of\:x \: )}{Cofficient\:of\:x^2} }\bigg\rgroup \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad :\implies \sf \alpha + \beta = \dfrac{-(Cofficient \:of\:x \: )}{Cofficient\:of\:x^2} \\

\qquad :\implies \sf 2 + \sqrt {3} + \beta = \dfrac{-(Cofficient \:of\:x \: )}{Cofficient\:of\:x^2} \\

\qquad :\implies \sf 2 + \sqrt {3} + \beta = \dfrac{-(-4 \: )}{1} \\

\qquad :\implies \sf 2 + \sqrt {3} + \beta = \dfrac{4 \:}{1} \\

\qquad :\implies \sf 2 + \sqrt {3} + \beta = 4 \\

\qquad :\implies \sf  \beta = 4 - 2 - \sqrt {3} \\

\qquad :\implies \sf  \beta = 2 - \sqrt {3} \\

\qquad \longmapsto \frak{\underline{\purple{\:  \beta = 2 - \sqrt {3} }} }\bigstar \\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {\:\beta\:\:or\:\:Other\:zero \:of\: Polynomial \:is\:\bf{ 2 - \sqrt {3}  }}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions