(y - px) (p-1)=p obtain its general and singular solution
Answers
Answered by
36
Answered by
9
Answer:
Simplifying
(y + -1px)(p + -1) = p
Reorder the terms:
(-1px + y)(p + -1) = p
Reorder the terms:
(-1px + y)(-1 + p) = p
Multiply (-1px + y) * (-1 + p)
(-1px * (-1 + p) + y(-1 + p)) = p
((-1 * -1px + p * -1px) + y(-1 + p)) = p
((1px + -1p2x) + y(-1 + p)) = p
(1px + -1p2x + (-1 * y + p * y)) = p
Reorder the terms:
(1px + -1p2x + (py + -1y)) = p
(1px + -1p2x + (py + -1y)) = p
Reorder the terms:
(1px + py + -1p2x + -1y) = p
(1px + py + -1p2x + -1y) = p
Solving
1px + py + -1p2x + -1y = p
Solving for variable 'p'.
Reorder the terms:
-1p + 1px + py + -1p2x + -1y = p + -1p
Combine like terms: p + -1p = 0
-1p + 1px + py + -1p2x + -1y = 0
The solution to this equation could not be determined.
Step-by-step explanation:
Similar questions