Y= (secx+2)(tanx+3)
Derivatives
Answers
Answered by
8
Now differentiating both sides :-
Now we will use product rule :-
taking out sec x common :-
Answer :
____________________
Learn more :
d( c)/dx = 0 ....where c is constant
d( x^n)/dx= n x^( n-1)
d( e^x)/dx= e^x
d( ln(x))/dx= 1/x
d( sin(x))/dx = cosx
d( cos(x))/dx = -sinx
d( tan(x))/dx = sec²x
d( sec(x))/dx = sec x tan x
d( cosec (x))/dx = -cotx cosec x
d( cot (x))/dx = - cosec ² x
Answered by
2
Now differentiating both sides :-
=> dx/dy = dxd((secx+2)(tanx+3))
Now we will use product rule :-
=> dx/d(uv) =u dx/dv +v dx/du
=> (tanx+3) dx/d(secx+2) +(secx+2) dx/d(tanx+3)
=> dx/dy= (tanx+3)(secxtanx+0)+(secx+2)(sec 2 x+0)
=> dx/dy =(tanx+3)(secxtanx)+(secx+2)(sec 2 x)
taking out sec x common :-
=> dx/dy =secx((tanx+3)(tanx)+(secx+2)(secx))
=> dx/dy = Xsec(tan² x+3tanx+sec 2 x+2secx)
=> dx/dy =Xsec(tan²x+3tanx+sec 2 x+2secx)Ans.
Similar questions