Math, asked by SharvariS, 1 month ago

y-sin^-1(2x^3) =cos^-1(2x^3)​ find dy/dx

Answers

Answered by mathdude500
9

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\boxed{ \tt{ \: y -  {sin}^{ - 1}( {2x}^{3}) =  {cos}^{ - 1}( {2x}^{3})\:  \: }}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{dy}{dx} \:  \: }}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:y -  {sin}^{ - 1}( {2x}^{3}) =  {cos}^{ - 1}( {2x}^{3})

can be rewritten as

\rm :\longmapsto\:y  =  {sin}^{ - 1}( {2x}^{3}) +  {cos}^{ - 1}( {2x}^{3})

We know,

\boxed{ \tt{ \:  {sin}^{ - 1}x +  {cos}^{ - 1}x =  \frac{\pi}{2} \:  \: }}

So, using this, we get

\rm :\longmapsto\:y = \dfrac{\pi}{2}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \dfrac{\pi}{2}

\bf\implies \:\boxed{ \tt{ \: \dfrac{dy}{dx} = 0 \: }}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions