Math, asked by saidarahas1132, 5 hours ago

y=sin^-1(4+5sinx/5+4 sin x) then find dy/dx

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

y =  \sin^{ - 1}  \bigg(  \frac{4 + 5 \sin(x) }{5 + 4 \sin(x) } \bigg)  \\

 \implies \frac{dy}{dx}=   \frac{1}{   \sqrt{1 - \bigg(  \frac{4 + 5 \sin(x) }{5 + 4 \sin(x) } \bigg)^{2}  }}. \frac{d}{dx} \bigg \{  \frac{4 + 5 \sin(x) }{5 + 4 \sin(x) } \bigg \}  \\

 \implies \frac{dy}{dx}=   \frac{5 + 4 \sin(x) }{   \sqrt{(5 + 4 \sin(x))^{2}   - (  4 + 5 \sin(x)  )^{2}  }}.  \bigg \{  \frac{ 5 \cos(x) (5 + 4 \sin(x)) - 4 \cos(x)(4 + 5 \sin(x)   )}{(5 + 4 \sin(x))^{2}  } \bigg \}  \\

 \implies \frac{dy}{dx}=   \frac{1 }{   \sqrt{25 + 16\sin^{2} (x)  + 40 \sin(x)   \cos(x)  -  16 -  25 \sin^{2} (x)  - 40 \sin(x)   \cos(x)  }}.  \bigg \{  \frac{ 25 \cos(x) + 20\sin(x) \cos(x)  - 16 \cos(x)  - 20 \sin(x) \cos(x)    }{5 + 4 \sin(x)  } \bigg \}  \\

 \implies \frac{dy}{dx}=   \frac{1 }{   \sqrt{9 - 9\sin^{2} (x)   }}.  \bigg \{  \frac{ 9 \cos(x)     }{5 + 4 \sin(x)  } \bigg \}  \\

 \implies \frac{dy}{dx}=   \frac{1 }{   \sqrt{9(1 - \sin^{2} (x) )  }}.  \bigg \{  \frac{ 9 \cos(x)     }{5 + 4 \sin(x)  } \bigg \}  \\

 \implies \frac{dy}{dx}=   \frac{1 }{   3 \cos (x)  }.  \bigg \{  \frac{ 9 \cos(x)     }{5 + 4 \sin(x)  } \bigg \}  \\

 \implies \frac{dy}{dx}=    \frac{ 3      }{5 + 4 \sin(x)  }  \\

Similar questions