Math, asked by akash77220022, 11 months ago

y=sin^-1[(asinx + bcosx)/✓a^2+b^2] then dy/dx​

Answers

Answered by prasadsapkal282
0

Answer:

This is your answer

Step-by-step explanation:

Step-by-step explanation:

y = Sin⁻¹ (a + bCosx)/(b + a Cosx)

=> Siny = (a + bCosx)/(b + a Cosx)

=> Cosy * dy/dx =   (a + bCosx) (aSinx)/(b + a Cosx)²   + (-bSinx)/(b + a Cosx)

=> Cosy * dy/dx =  ( (a + bCosx) (aSinx) + (b + a Cosx)(-bSinx))/(b + a Cosx)²

=>  Cosy * dy/dx =  ( a²Sinx + abCosxSinx -abCosxSinx - b²Sinx))/(b + a Cosx)²

=>  Cosy * dy/dx =  ( a²Sinx  - b²Sinx))/(b + a Cosx)²

=>  Cosy * dy/dx =  -Sinx( b² - a²))/(b + a Cosx)²

Siny = (a + bCosx)/(b + a Cosx)

=> Cos²y = 1  - ((a + bCosx)/(b + a Cosx))²

=> Cos²y = (b² + a²Cos²x + 2abCosx  - (a² + b²Cos²x + 2abCosx) )/(b + a Cosx)²

=> Cos²y = (b²sin²x - a²Sin²x )/(b + a Cosx)²

=> Cosy = Sinx √(b² - a²)/(b + a Cosx)

(Sinx √(b² - a²)/(b + a Cosx)) * dy/dx =   -Sinx( b² - a²))/(b + a Cosx)²

=> √(b² - a²) * dy/dx = - ( b² - a²))/(b + a Cosx)

=> dy/dx = - ( √(b² - a²))/(b + a Cosx)

Learn more

find d^2y/dx^2 y = x^2 (sinx + cosx) - Brainly.in

brainly.in/question/3876174

DIFFERENTIAL CALCULUS If y = x sin^-1 x / (√1-x^2) ,prove that (1 ...

Read more on Brainly.in - https://brainly.in/question/2820422#readmore

Similar questions