Math, asked by janvisumanraj2791, 17 days ago

Y sin 2x dx =(1+y^+cos^x)dy

Answers

Answered by senboni123456
3

Answer:

Step-by-step explanation:

We have,

\tt{y\cdot\,sin(2x)\,dx=\left(1+y^2+cos^2(x)\right)dy}

\tt{\implies\,sin(2x)\cdot\dfrac{dx}{dy}=\dfrac{1+y^2+cos^2(x)}{y}}

\tt{\implies\,sin(2x)\cdot\dfrac{dx}{dy}=\dfrac{1+y^2}{y}+\dfrac{cos^2(x)}{y}}

\tt{\implies\,sin(2x)\cdot\dfrac{dx}{dy}-\dfrac{cos^2(x)}{y}=\dfrac{1+y^2}{y}}

\bf{Put\,\,\,-cos^2(x)=v}

\bf{\implies-2\,cos(x)\cdot(-sin(x))\cdot\dfrac{dx}{dy}=\dfrac{dv}{dy}}

\bf{\implies2\,cos(x)\,sin(x)\cdot\dfrac{dx}{dy}=\dfrac{dv}{dy}}

\bf{\implies\,sin(2x)\cdot\dfrac{dx}{dy}=\dfrac{dv}{dy}}

So,

\tt{\implies\,\dfrac{dv}{dy}+\dfrac{v}{y}=\dfrac{1+y^2}{y}}

This is linear form, so,

\sf{I.F.=e^{\displaystyle\,\int\dfrac{dy}{y}}}

\sf{\implies\,I.F.=e^{\displaystyle\ln(y)}}

\sf{\implies\,I.F.=y}

Now,

\tt{\displaystyle\,v\cdot\,y=\int\dfrac{1+y^2}{y}\cdot\,y\,dy}

\tt{\displaystyle\implies\,v\cdot\,y=\int\left(1+y^2\right)dy}

\tt{\displaystyle\implies\,v\cdot\,y=y+\dfrac{y^3}{3}+c}

Put the value of v

\tt{\displaystyle\implies\,-cos^2(x)\cdot\,y=y+\dfrac{y^3}{3}+c}

\tt{\displaystyle\implies\,-3\,cos^2(x)\cdot\,y=3y+y^3+3c}

\tt{\displaystyle\implies\,3y+3\,cos^2(x)\cdot\,y+y^3+3c=0}

\tt{\displaystyle\implies\,3\,y\left(1+cos^2(x)\right)+y^3=-3c}

Put -3c = C

\tt{\displaystyle\implies\,3\,y\left(1+cos^2(x)\right)+y^3=C}

Similar questions