Math, asked by ravindras931, 9 months ago

y= Sin 3x.Sin 8x find dy/dx​

Answers

Answered by BrainlyPopularman
12

ANSWER :

  \\ \dashrightarrow { \bf \dfrac{dy}{dx}  =8 \sin(3x)\cos(8x)  + 3 \sin(8x)( \cos 3x)} \\

EXPLANATION :

GIVEN :

  \\  \bf \implies y =  \sin(3x) . \sin(8x)  \\

TO FIND :

  \\  \bf \implies  \dfrac{dy}{dx}  =?   \\

SOLUTION :

  \\  \bf \implies y =  \sin(3x) . \sin(8x)  \\

• We know that –

  \\  \bf \implies  \dfrac{d(u.v)}{dx}  =u \dfrac{dv}{dx}  + v \dfrac{du}{dx}  \\

• And –

  \\  \bf \implies  \dfrac{d( \sin x)}{dx}  = \cos x   \\

• So that –

  \\  \bf \implies  \dfrac{dy}{dx}  = \sin(3x) \dfrac{d( \sin 8x) }{dx}  +  \sin(8x)  \dfrac{d( \sin 3x) }{dx}  \\

  \\  \bf \implies  \dfrac{dy}{dx}  = \sin(3x)(8) \cos(8x)  +  \sin(8x) (3)( \cos 3x)  \\

  \\ \implies { \boxed{ \bf \dfrac{dy}{dx}  =8 \sin(3x)\cos(8x)  + 3 \sin(8x)( \cos 3x)}}  \\

 \\ \rule{220}{2} \\

Answered by Anonymous
3

Given ,

The function is

  • Y = Sin(3x) . Sin(8x)

Differentiating with respect to x , we get

 \sf \mapsto \frac{dy}{dx}  =  \frac{d}{dx} Sin(3x) . Sin(8x)   \\  \\ \sf \mapsto \frac{dy}{dx}  =  Sin(8x)  \frac{d \{Sin(3x) \}}{dx}  + Sin(3x)  \frac{d \{Sin(8x) \}}{dx}  \\  \\ \sf \mapsto \frac{dy}{dx}  =  Sin(8x)  \times 3 \{Cos(3x) \} + Sin(3x)   \times 8 \{ Cos(8x) \} \\  \\ \sf \mapsto \frac{dy}{dx}  =  8\{ Cos(8x) \}  \times Sin(3x) + 3\{Cos(3x) \} \times    Sin(8x)

Remmember :

 \sf \mapsto \frac{d(u.v)}{dx}  = v \frac{d(u)}{dx}  + u \frac{(v)}{dx} </p><p>

Similar questions