Math, asked by Ayushwase28, 3 months ago

y = sin (msin^-1x)
prove
(1-x^2)d2y/dx^2 - xdy/dc + m^2y = 0​

Answers

Answered by shadowsabers03
8

Note that y_1=\dfrac{dy}{dx} and y_2=\dfrac{d^2y}{dx^2}.

Given,

\longrightarrow y=\sin(m\sin^{-1}x)

\longrightarrow m^2y=m^2\sin(m\sin^{-1}x)\quad\quad\dots(1)

First derivative of y is,

\longrightarrow y_1=\dfrac{d}{dx}\left[\sin(m\sin^{-1}x)\right]

\longrightarrow y_1=\cos(m\sin^{-1}x)\cdot \dfrac{m}{\sqrt{1-x^2}}

\longrightarrow y_1=\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow xy_1=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\quad\quad\dots(2)

Second derivative of y is,

\longrightarrow y_2=\dfrac{d}{dx}\left[\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\right]

\longrightarrow y_2=m\cdot\dfrac{-\sin(m\sin^{-1}x)\cdot\dfrac{m}{\sqrt{1-x^2}}\cdot\sqrt{1-x^2}-\cos(m\sin^{-1}x)\cdot\dfrac{-2x}{2\sqrt{1-x^2}}}{1-x^2}

\longrightarrow y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{(1-x^2)\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}-m^2\sin(m\sin^{-1}x)

From (1) and (2),

\longrightarrow(1-x^2)y_2=xy_1-m^2y

\longrightarrow\underline{\underline{(1-x^2)y_2-xy_1+m^2y=0}}

Hence Proved!

Answered by multiplethanker79
64

Answer:

Note that y_1=\dfrac{dy}{dx} and y_2=\dfrac{d^2y}{dx^2}.

Given,

\longrightarrow y=\sin(m\sin^{-1}x)

\longrightarrow m^2y=m^2\sin(m\sin^{-1}x)\quad\quad\dots(1)

First derivative of y is,

\longrightarrow y_1=\dfrac{d}{dx}\left[\sin(m\sin^{-1}x)\right]

\longrightarrow y_1=\cos(m\sin^{-1}x)\cdot \dfrac{m}{\sqrt{1-x^2}}

\longrightarrow y_1=\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow xy_1=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\quad\quad\dots(2)

Second derivative of y is,

\longrightarrow y_2=\dfrac{d}{dx}\left[\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\right]

\longrightarrow y_2=m\cdot\dfrac{-\sin(m\sin^{-1}x)\cdot\dfrac{m}{\sqrt{1-x^2}}\cdot\sqrt{1-x^2}-\cos(m\sin^{-1}x)\cdot\dfrac{-2x}{2\sqrt{1-x^2}}}{1-x^2}

\longrightarrow y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{(1-x^2)\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}-m^2\sin(m\sin^{-1}x)

From (1) and (2),

\longrightarrow(1-x^2)y_2=xy_1-m^2y

\longrightarrow\underline{\underline{(1-x^2)y_2-xy_1+m^2y=0}}

Hence Proved!

Answered by multiplethanker79
32

Answer:

Note that y_1=\dfrac{dy}{dx} and y_2=\dfrac{d^2y}{dx^2}.

Given,

\longrightarrow y=\sin(m\sin^{-1}x)

\longrightarrow m^2y=m^2\sin(m\sin^{-1}x)\quad\quad\dots(1)

First derivative of y is,

\longrightarrow y_1=\dfrac{d}{dx}\left[\sin(m\sin^{-1}x)\right]

\longrightarrow y_1=\cos(m\sin^{-1}x)\cdot \dfrac{m}{\sqrt{1-x^2}}

\longrightarrow y_1=\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow xy_1=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\quad\quad\dots(2)

Second derivative of y is,

\longrightarrow y_2=\dfrac{d}{dx}\left[\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\right]

\longrightarrow y_2=m\cdot\dfrac{-\sin(m\sin^{-1}x)\cdot\dfrac{m}{\sqrt{1-x^2}}\cdot\sqrt{1-x^2}-\cos(m\sin^{-1}x)\cdot\dfrac{-2x}{2\sqrt{1-x^2}}}{1-x^2}

\longrightarrow y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{(1-x^2)\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}-m^2\sin(m\sin^{-1}x)

From (1) and (2),

\longrightarrow(1-x^2)y_2=xy_1-m^2y

\longrightarrow\underline{\underline{(1-x^2)y_2-xy_1+m^2y=0}}

Hence Proved!

Answered by multiplethanker79
182

Answer:

Note that y_1=\dfrac{dy}{dx} and y_2=\dfrac{d^2y}{dx^2}.

Given,

\longrightarrow y=\sin(m\sin^{-1}x)

\longrightarrow m^2y=m^2\sin(m\sin^{-1}x)\quad\quad\dots(1)

First derivative of y is,

\longrightarrow y_1=\dfrac{d}{dx}\left[\sin(m\sin^{-1}x)\right]

\longrightarrow y_1=\cos(m\sin^{-1}x)\cdot \dfrac{m}{\sqrt{1-x^2}}

\longrightarrow y_1=\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow xy_1=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\quad\quad\dots(2)

Second derivative of y is,

\longrightarrow y_2=\dfrac{d}{dx}\left[\dfrac{m\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}\right]

\longrightarrow y_2=m\cdot\dfrac{-\sin(m\sin^{-1}x)\cdot\dfrac{m}{\sqrt{1-x^2}}\cdot\sqrt{1-x^2}-\cos(m\sin^{-1}x)\cdot\dfrac{-2x}{2\sqrt{1-x^2}}}{1-x^2}

\longrightarrow y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{(1-x^2)\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)-m^2\sqrt{1-x^2}\sin(m\sin^{-1}x)}{\sqrt{1-x^2}}

\longrightarrow(1-x^2)y_2=\dfrac{mx\cos(m\sin^{-1}x)}{\sqrt{1-x^2}}-m^2\sin(m\sin^{-1}x)

From (1) and (2),

\longrightarrow(1-x^2)y_2=xy_1-m^2y

\longrightarrow\underline{\underline{(1-x^2)y_2-xy_1+m^2y=0}}

Hence Proved!

Similar questions