Math, asked by Moana4406, 2 months ago

y=sin x+root3cos x find maximum and minimum value

Answers

Answered by amansharma264
2

EXPLANATION.

⇒ y = sin(x) + √3 cos(x).

As we know that,

Multiply and divide both numerator and denominator by 2, we get.

⇒ y = 2[sin(x) + √3 cos(x)]/2.

⇒ y = 2[sin(x)/2 + √3cos(x)/2].

As we know that,

Formula of :

⇒ sin(A ± B) = sin(A).cos(B) ± cos(A).sin(B).

Using this formula in equation, we get.

⇒ y = 2[sin(x).cos(60°) + cos(x).sin(60°)].

⇒ y = 2[sin(x + 60°)].

As we know that,

⇒ Range of sinθ = [-1,1].

⇒ y = [sin(x + 60°)] ∈ [-1,1].

⇒ y = 2[sin(x + 60°)] ∈ [-2, 2].

Maximum value = 2.

Minimum value = - 2.

                                                                                                                         

MORE INFORMATION.

Note :

(1) = If f'(a) = 0, f''(a) = 0, f'''(a) ≠ 0 then x = a is not an extreme point for the function f(x).

(2) = If f'(a) = 0, f''(a) = 0, f'''(a) = 0 then the sign of f''''(a) will determine the maximum and minimum value of function that is, f(x) is maximum, if f''''(a) < 0 and minimum if f''''(a) > 0.

(3) = If f'(a) = f''(a) = f'''(a) = . . . . = f⁽ⁿ⁻¹⁾(a) = 0 and fⁿ(a) ≠ 0 if n is odd then f(x) has neither local maximum nor local minimum at x = a and this is point of inflection.

If n is even then fⁿ(a) < 0.

f(x) has a local maximum at x = a and if fⁿ(a) > 0 then f(x) has a local minimum at x = a.

Similar questions