y =sin²(x⁴),find dy/dx.
Answers
Answered by
4
Answer:
Hope this helps you
Step-by-step explanation:
Let p=x2x4+a4−−−−−−√−−(1)p=x2x4+a4−−(1)
Substitute x2=a2tan(θ)x2=a2tan(θ)
=>p=x2x4+a4−−−−−−√=>p=x2x4+a4
=>p=a2tan(θ)a4tan2(θ)+a4−−−−−−−−−−−−√=>p=a2tan(θ)a4tan2(θ)+a4
=>p=a2tan(θ)a2sec(θ)=sin(θ)=>p=a2tan(θ)a2sec(θ)=sin(θ)
y=sin−1(x2x4+a4−−−−−−√)=sin−1
=>y=θ=>y=θ
=>dydθ=1−−(2)=>dydθ=1−−(2)
x2=a2tan(θ)x2=a2tan(θ)
2xdxdθ=a2sec2(θ)=a2(1+tan2(θ))2xdxdθ=a2sec2(θ)=a2(1+tan2(θ))
=a2+a2tan2(θ)=a2+x4a2=a4+x4a2−−(3)=a2+a2tan2(θ)=a2+x4a2=a4+x4a2−−(3)
dxdθ=a4+x42a2xdxdθ=a4+x42a2x
=>dydx=dydθ÷dxdθ
Similar questions