Math, asked by anshutomar756, 11 months ago

y=(sinx/2+cosx/2)^2 at x=π/6

Answers

Answered by Anonymous
2

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:-}}.

Given here.

y= (sin x/2 + Cosx/2)²,

= (sin²x/2 + Cos²x/2 +2sinx/2 cosx/2).

= 1+2sinx/2 Cosx/2.

= 1+sin2x/2.

= 1+sinx.

Keep , x=π/6.

y= 1+sinπ/6.

= 1+1/2.

= 1.5

Hopes ita helpa u

\huge\boxed{\fcolorbox{cyan}{grey}{</u></em><em><u>F</u></em><em><u>o</u></em><em><u>l</u></em><em><u>l</u></em><em><u>o</u></em><em><u>w</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u>.</u></em><em><u>:-}}

Answered by ItSdHrUvSiNgH
3

Step-by-step explanation:

y =  {( \sin( \frac{x}{2}) +  \cos( \frac{x}{2} )  ) }^{2}  \: at \: x =  \frac{\pi}{6}  =  &gt;  \\ y =  {( \sin( \frac{\pi }{12} ) +  \cos( \frac{\pi}{12} )  )}^{2}  \\y =  {( (\frac{ \sqrt{2 -  \sqrt{3} } }{2}) + ( \frac{ \sqrt{2 +  \sqrt{3} } }{2}  ))}^{2}   \\ \\((  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab)) \\  \\ y =  \frac{2 -  \sqrt{3} }{4}  +  \frac{2 +  \sqrt{3} }{4}  + 2( \frac{2 -  \sqrt{3} }{4} ) \\ y = 1 +  \frac{2 - 2 \sqrt{3} }{4}  \\ (y =  \frac{ 6 - 2 \sqrt{3} }{4} ) \\  \\ therefore \: y = \frac{ 6 - 2 \sqrt{3} }{4}  \: is \: the \: solution...

Similar questions