y= (sinx)^cos x. find out
Answers
Answered by
1
Answer:
dy/dx = sinx^cosx(- sinxln(sinx) + cosx cotx)
Step-by-step explanation:
Take logarithm of both sides.
lny=ln(sinx)^cosx
lny=cosxln(sinx)
Use the implicit differentiation as well as the product and chain rules to differentiate.
d/dx(lnsinx) = 1/sinx(cosx)
= cosx/sinx
= cotx
now,
1/y(dy/dx) = - sinx(ln(sinx)) + cosx cotx
dy/dx = y(- sinxln(sinx) + cosx cotx)
= sinx^cosx(- sinxln(sinx) + cosx cotx)
hope u understand
Similar questions