Math, asked by Butterfly12368, 4 hours ago

y = sinx cos3x find dy/dx​

Answers

Answered by varadad25
6

Answer:

\displaystyle{\boxed{\red{\sf\:\dfrac{dy}{dx}\:=\:\cos\:x\:.\:\cos\:3x\:-\:3\:\sin\:3x\:.\:\sin\:x}}}

Step-by-step-explanation:

The given function is

\displaystyle{\sf\:y\:=\:\sin\:x\:\cos\:3x}

We have to find the derivative of the given function.

Now,

\displaystyle{\sf\:y\:=\:\sin\:x\:\cos\:3x}

We know that,

If

\displaystyle{\sf\:y\:=\:uv}

then

\displaystyle{\boxed{\pink{\sf\:\dfrac{dy}{dx}\:=\:\dfrac{du}{dx}\:v\:+\:\dfrac{dv}{dx}\:u}}}

Now, we have,

\displaystyle{\sf\:y\:=\:\sin\:x\:\cos\:3x}

\displaystyle{\sf\:u\:=\:\sin\:x\:\&\:v\:=\:\cos\:3x}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:\left(\:\dfrac{d}{dx}\:(\sin\:x)\:\right)\:\cos\:3x\:+\:\left(\:\dfrac{d}{dx}\:(\cos\:3x)\:\right)\:\sin\:x}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:\cos\:x\:.\:\cos\:3x\:+\:\left(\:\dfrac{d}{dx}\:(\:\cos\:3x\:)\:\right)\:\left(\:\dfrac{d}{dx}\:(3x)\:\right)\:\sin\:x}

\displaystyle{\implies\sf\:\dfrac{dy}{dx}\:=\:\cos\:x\:.\:\cos\:3x\:+\:(\:-\:\sin\:3x\:)\:3\:.\:\sin\:x}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\dfrac{dy}{dx}\:=\:\cos\:x\:.\:\cos\:3x\:-\:3\:\sin\:3x\:.\:\sin\:x}}}}

Similar questions