Physics, asked by darsansingh74, 9 months ago

y = Sinx. Cosex then dy / dx

Answers

Answered by Anonymous
15

Given :-

  • \large \tt \: y = Sinx.Cosx

To Find :-

  • \large \tt\frac{dy}{dx}

Solution :-

 \implies \tt \: y = Sinx.Cosx

 \tt \blue{ {Differentiate \: with \: respect \: to \:  \red{x}.}}

 \implies \tt  \frac{dy}{dx}  =  \frac{d}{dx} (sinx.cosx)

 \tt \:  \green{Applying \: chain \: rule:-}

\tt \: if \: y = pq  \: , \: then

 \implies \tt \:  \frac{dy}{dx}  =  p( \frac{dq}{dx})  + q( \frac{dp}{dx} )

 \implies \tt \:  \frac{dy}{dx}  =  \frac{d}{dx} (sinx.cosx)

 \implies \tt \:  \frac{dy}{dx}  = sinx[\frac{d}{dx} (cosx)] + cosx[ \frac{d}{dx} (sinx)]

 \implies \tt \:  \frac{dy}{dx}  = sinx \times ( - sinx) + cosx(cosx)

 \implies \tt \:   \frac{dy}{dx}  = cos {}^{2} x - sin {}^{2} x

 \tt \: We \: know \: that,  \orange{[cos2x = cos {}^{2} x - sin {}^{2} x]}

Hence,

  \huge \pink{ \boxed{\tt \:  \frac{dy}{dx}  = cos2x}}

Similar questions