Y=t²+t³ and x=t-t⁴ the. Find d²y/dx²
Answers
Given : y=t²+t³ and x=t-t⁴
To find : d²y/dx²
Solution:
y = t² + t³
=> dy/dt = 2t + 3t²
x = t - t⁴
=> dx/dt = 1 - 4t³
(dy/dt)/(dx/dt) = (2t + 3t²)/(1 - 4t³)
=> dy/dx = (2t + 3t²)/(1 - 4t³)
=> d²y/dx² = ((2t + 3t²) (-1)/ (1 - 4t³)² ) (-12t² dt/dx) + (1/(1 - 4t³))(2 + 6t)dt/dx
=> d²y/dx² = ((dt/dx)/ (1 - 4t³)² ) ( 24t³ + 36t⁴ - 24t⁴ - 8t³ + 6t + 2 )
dx/dt = 1 - 4t³ => dt/dx = 1/(1 - 4t³)
=> d²y/dx² = ( 12t⁴ + 16t³ + 6t + 2) / (1 - 4t³)³
d²y/dx² = ( 12t⁴ + 16t³ + 6t + 2) / (1 - 4t³)³
Learn more:
find d^2y/dx^2 y = x^2 (sinx + cosx)
https://brainly.in/question/3876174
e^{6x} cos 3x द्वितीय कोटि के अवकलज ज्ञात कीजिए ...
https://brainly.in/question/15287523
यदि y = 5 cos x – 3 sin x है तो सिद्ध कीजिए कि d^{2}y/dx^{2 ...
https://brainly.in/question/15287542