Math, asked by nikita3842, 1 year ago

Y=tan^-1(8x\1-15x2) find dy\dx

Answers

Answered by dhinu04
2

Step-by-step explanation:

solution is in the attached pic !

Attachments:
Answered by talasilavijaya
0

Answer:

\dfrac{dy}{ dx}=\dfrac{3}{ 1+9x^2}+\dfrac{5}{ 1+25x^2}

Step-by-step explanation:

Given the trigonometric relation,

y=tan^{-1}\bigg(\dfrac{8x}{1-15x^2}\bigg)

which can be written as

y=tan^{-1}\bigg(\dfrac{3x+5x}{1-(3x)(5x)}\bigg)

Using the trigonometric condition,

tan^{-1}x+tan^{-1}y=tan^{-1}\bigg(\dfrac{x+y}{1-xy}\bigg)

we can write

tan^{-1}\bigg(\dfrac{3x+5x}{1-(3x)(5x)}\bigg)=tan^{-1}3x+tan^{-1}5x

\implies y=tan^{-1}3x+tan^{-1}5x

Differentiating with respect to x,

\dfrac{dy}{dx} =\dfrac{d}{dx}\Big[tan^{-1}3x+tan^{-1}5x\Big]

     =\dfrac{d}{dx}tan^{-1}3x+\dfrac{d}{dx}tan^{-1}5x

Using the trigonometric relation,

tan^{-1}x=\dfrac{1}{x^{2} }

we get

\dfrac{dy}{dx}=\dfrac{1}{ 1+(3x)^2}.\dfrac{d}{dx}(3x)+\dfrac{1}{ 1+(5x)^2}.\dfrac{d}{dx}(5x)

    =\dfrac{1}{ 1+(3x)^2}.3+\dfrac{1}{ 1+(5x)^2}.5

    =\dfrac{3}{ 1+9x^2}+\dfrac{5}{ 1+25x^2}

Therefore, \dfrac{dy}{ dx}=\dfrac{3}{ 1+9x^2}+\dfrac{5}{ 1+25x^2}

Similar questions