y=tan^-1{(sinx)/(1+cosx)}
Answers
Answered by
3
<<HEY MATE HERE'S YOUR ANSWER>>
Notice,
tan−1(sinx1+cosx)=tan−1(2sinx2cosx21+2cosx2−1)tan−1(sinx1+cosx)=tan−1(2sinx2cosx21+2cosx2−1)
=tan−1(2sinx2cosx22cos2x2)=tan−1(2sinx2cosx22cos2x2)
=tan−1(sinx2cosx2)=tan−1(sinx2cosx2)
=tan−1(tanx2)=x2=tan−1(tanx2)=x2
and,
tan−1(cosx1+sinx)=tan−1⎛⎝⎜⎜1−tan2x21+tan2x21+2tanx21+tan2x2⎞⎠⎟⎟tan−1(cosx1+sinx)=tan−1(1−tan2x21+tan2x21+2tanx21+tan2x2)
=tan−1(1−tan2x21+tan2x2+2tanx2)=tan−1(1−tan2x21+tan2x2+2tanx2)
=tan−1((1−tanx2)(1+tanx2)(1+tanx2)2)=tan−1((1−tanx2)(1+tanx2)(1+tanx2)2)
=tan−1(1−tanx21+tanx2)=tan−1(1−tanx21+tanx2)
=tan−1(tanπ4−tanx21+tanπ4tanx2)=tan−1(tanπ4−tanx21+tanπ4tanx2)
=tan−1(tan(π4−x2))=tan−1(tan(π4−x2))
=π4−x2=π4−x2
hence,
ddx(sinx1+cosx)ddx(cosx1+sinx)ddx(sinx1+cosx)ddx(cosx1+sinx)
=ddx(x2)ddx(π4−x2)=ddx(x2)ddx(π4−x2)
=1/2−1/2=1/2−1/2
=−1
HOPE IT HELPS
PLZ MRK AS BRAINLIST
Notice,
tan−1(sinx1+cosx)=tan−1(2sinx2cosx21+2cosx2−1)tan−1(sinx1+cosx)=tan−1(2sinx2cosx21+2cosx2−1)
=tan−1(2sinx2cosx22cos2x2)=tan−1(2sinx2cosx22cos2x2)
=tan−1(sinx2cosx2)=tan−1(sinx2cosx2)
=tan−1(tanx2)=x2=tan−1(tanx2)=x2
and,
tan−1(cosx1+sinx)=tan−1⎛⎝⎜⎜1−tan2x21+tan2x21+2tanx21+tan2x2⎞⎠⎟⎟tan−1(cosx1+sinx)=tan−1(1−tan2x21+tan2x21+2tanx21+tan2x2)
=tan−1(1−tan2x21+tan2x2+2tanx2)=tan−1(1−tan2x21+tan2x2+2tanx2)
=tan−1((1−tanx2)(1+tanx2)(1+tanx2)2)=tan−1((1−tanx2)(1+tanx2)(1+tanx2)2)
=tan−1(1−tanx21+tanx2)=tan−1(1−tanx21+tanx2)
=tan−1(tanπ4−tanx21+tanπ4tanx2)=tan−1(tanπ4−tanx21+tanπ4tanx2)
=tan−1(tan(π4−x2))=tan−1(tan(π4−x2))
=π4−x2=π4−x2
hence,
ddx(sinx1+cosx)ddx(cosx1+sinx)ddx(sinx1+cosx)ddx(cosx1+sinx)
=ddx(x2)ddx(π4−x2)=ddx(x2)ddx(π4−x2)
=1/2−1/2=1/2−1/2
=−1
HOPE IT HELPS
PLZ MRK AS BRAINLIST
DevTambe:
Rhs = 1/2
Similar questions