y= tan-¹(x+√1+x²)+x find y
Answers
Answered by
0
Step-by-step explanation:
y= tan^-1[{√(1+x^2)-1}/x].
Putting x=cot(a)
y= tan^-1[{√(1+cot^2a)-1}/cota}].
y= tan^-1[{ 1/sina -1}×sina/cosa}].
y = tan^-1[(1-sina)/cosa ]
y=tan^-1[(cos^2a/2+sin^2a/2–2.sina/2.cosa/2)/(cos^2a/2-sin^a/2)]
y= tan^-1[(cosa/2-sina/2)^2/(cosa/2+sina/2)(cosa/2-sina/2)]
y= tan^-1[(cosa/2-sina/2)/(cosa/2+sina/2)]
Dividing in Nr and Dr by cosa/2
y= tan^-1[(1-tana/2)/(1+tana/2)]
y= tan^-1[(tanπ/4-tana/2)/(1+tanπ/4.tanA/2)]
y=tan^-1 tan(π/4-a/2)
y = π/4 -a/2
y= π/4 -1/2.cot^-1(x)
dy/dx = 0 -1/2.[-1/(1+x^2)].
dy/dx = 1/{2(1+x^2)}. Answer.
Hope you have satisfied with this answer.So please follow me and thank me and make me as brainlesset soon and Vote my answer.
Similar questions