Math, asked by Haritha8585, 1 year ago

y = (tan x +cot x)/ (tan x - cotx ) then dy/dx =?

Answers

Answered by MaheswariS
27

\text{First we simplify the given function, it will make the differentiation very simple}

\textbf{Given:}

y=\displaystyle\frac{tanx+cotx}{tanx-cotx}

y=\displaystyle\frac{tan\,x+\frac{1}{tan\,x}}{tan\,x-\frac{1}{tan\,x}}

y=\displaystyle\frac{\frac{1+tan^2x}{tan\,x}}{\frac{tan^2x-1}{tan\,x}}

y=\displaystyle\frac{1+tan^2x}{tan^2x-1}

y=\displaystyle\frac{1+tan^2x}{-(1-tan^2x)}

y=\displaystyle\frac{1}{-\frac{(1-tan^2x)}{1+tan^2x}}

y=\displaystyle\frac{1}{-cos\,2x}

y=\displaystyle\,-sec\,2x

\text{Differentiate with respect to x}

\displaystyle\frac{dy}{dx}=-2\,sec\,2x\,tan\,2x

Similar questions