Math, asked by chinnichaithra5678, 3 months ago

y = tan x. x¹⁸ differentiate w.r.t x​

Answers

Answered by mathdude500
6

Question :-

\bf \:Differentiate \: w.r.t.x :  \: y \:  = {x}^{18}  tanx

Answer

Given : -

\bf \:y =  {x}^{18} tanx

To find :-

\bf \:\dfrac{dy}{dx}

Formula used :-

\bf \:\dfrac{d}{dx} (u.v) = u\dfrac{d}{dx} v + v\dfrac{d}{dx} u

\bf \:\dfrac{d}{dx}  {x}^{n}  =  {nx}^{n - 1}

\bf \:\dfrac{d}{dx} tanx =  {sec}^{2} x

Solution :-

\bf \:Consider \: y =  {x}^{18} tanx

Differentiate w. r. t. x, we get

\bf \:\dfrac{dy}{dx}  =  {x}^{18} \dfrac{d}{dx} tanx + tanx\dfrac{d}{dx}  {x}^{18}

\bf \:\dfrac{dy}{dx}  =  {x}^{18}  {sec}^{2} x + tanx \times 18 {x}^{17}

\bf \:\dfrac{dy}{dx}  =  {x}^{17} (x {sec}^{2} x + 18tanx)

_________________________________________

Similar questions