Math, asked by ali9120, 11 months ago

y=(x-1)(x-2)(x-3)- - - - -(x-2020). find its 1st ordered derivative

Answers

Answered by Anonymous
26

Question:

Find the 1st ordered derivative of ,

y = (x-1)(x-2)(x-3)-----(x-2020) .

Solution:

Please refer to the attachment.

Note:

1. Sum rule and difference rule:

If y = f(x) ± g(x) , then ;

dy/dx = d{f(x)}/dx ± d{g(x)}/dx

2. Product rule:

If y = f(x)•g(x) , then ;

dy/dx = g(x)•d{f(x)}/dx + f(x)•d{g(x)}/dx

3. Division rule:

If y = f(x)/g(x) , then ;

dy/dx = [g(x)•d{f(x)}/dx - f(x)•d{g(x)}/dx] / {g(x)}²

4. Chain rule:

If y = f(u) , u = g(v) , v = h(x) , then ;

dy/dx = (dy/du)•(du/dv)•(dv/dx)

• d(logx)/dx = 1/x

• log(A•B•C•...) = logA + logB + logC +...

• log(A/B) = logA - logB

• log(A^B) = B•logA

Attachments:
Answered by Anonymous
5

Answer:-

REQUIRED TO FIND :-

  • First order derivative of y = (x-1) (x-2) (x-3) ......(x-2020)

SOLUTION :-

Given  \:  \:  \\  \\ y = (x-1) (x-2) (x-3) ......(x-2020) \\  \\ APPLYING   \: \: LOG \:  \:  ON  \:  \: BOTH \:  \:  SIDES \\  \\ log(y) =   log(x-1) \:  + log(x - 2) \:  + log(x-3) \:  + .......log(x - 2020) \:  +  \\  \\ DIFFERENTIATING   \:  \:   \: W.R.T  \:  \: X  \:  \: ON  \:  \: BOTH SIDES \\  \\  \frac{1}{y}  \frac{dy}{dx}  \:  =  \frac{1}{x - 1} \:  +  \frac{1}{x - 2} \:  +\frac{1}{x - 3} \:  +........\frac{1}{x - 2020}  \\  \\ \frac{dy}{dx}  \:  =  y(\frac{1}{x - 1} \:  +  \frac{1}{x - 2} \:  +\frac{1}{x - 3} \:  +........\frac{1}{x - 2020} ) \\  \\  \frac{dy}{dx}  = (x-1) (x-2) (x-3) ......(x-2020)( \: \frac{1}{x - 1} \:  +  \frac{1}{x - 2} \:  +\frac{1}{x - 3} \:  +........\frac{1}{x - 2020} ) \\

NOTE :-

 \frac{d log(x) }{dx}  \:  =  \frac{1}{x}   \\ \\  log(ab)  =  log(a)  \:  +  \:  log(b)

(uvw)' = u'vw + uv'w + uvw'

HOPE IT HELPS ✔️ ✔️✔️✔️

#VANDEMATARAM‼️


Anonymous: Awesome
Similar questions