Math, asked by SohamChoudhuri, 4 months ago

y = √x + 1/√x হলে প্রমাণ করাে যে, 2x * dy/dx + y = 2√x​

Answers

Answered by senboni123456
13

Answer:

Step-by-step explanation:

We have,

\sf{y=\sqrt{x}+\dfrac{1}{\sqrt{x}}}

\sf{\implies\,y^2=\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)^2}

\sf{\implies\,y^2=x+\dfrac{1}{x}+2}

\sf{\implies\,2y\,\dfrac{dy}{dx}=1-\dfrac{1}{x^2}}

\sf{\implies\,2\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)\,\dfrac{dy}{dx}=\dfrac{x^2-1}{x^2}}

\sf{\implies\,2\left(\dfrac{x+1}{\sqrt{x}}\right)\,\dfrac{dy}{dx}=\dfrac{(x+1)(x-1)}{x^2}}

\sf{\implies\,\dfrac{2}{\sqrt{x}}\,\dfrac{dy}{dx}=\dfrac{x-1}{x^2}}

\sf{\implies\,\dfrac{2\,x^2}{\sqrt{x}}\,\dfrac{dy}{dx}=x-1}

\sf{\implies\,2\,x\sqrt{x}\,\dfrac{dy}{dx}=x-1}

\sf{\implies\,2x\,\dfrac{dy}{dx}=\dfrac{x-1}{\sqrt{x}}}

\sf{\implies\,2x\,\dfrac{dy}{dx}=\sqrt{x}-\dfrac{1}{\sqrt{x}}}

\sf{\implies\,2x\,\dfrac{dy}{dx}=2\sqrt{x}-\sqrt{x}-\dfrac{1}{\sqrt{x}}}

\sf{\implies\,2x\,\dfrac{dy}{dx}=2\sqrt{x}-\left(\sqrt{x}+\dfrac{1}{\sqrt{x}}\right)}

\sf{\implies\,2x\,\dfrac{dy}{dx}=2\sqrt{x}-y}

\sf{\implies\,2x\,\dfrac{dy}{dx}+y=2\sqrt{x}}

Similar questions