Math, asked by jayshrik125, 17 days ago

y= x /1+x² then dy /dx = a. (1 - x²)/(1 + x²) b. ((1 - x²)²/(1 + x²) C. (1 - x²)/(1 + x²)² d. None of these​

Answers

Answered by AllenGPhilip
43

Answer:

(c)  \frac{(1-x)^2}{(1+x^2)^2}

Step-by-step explanation:

Given y = \frac{x}{1+x^2}

Using Quotient rule

\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{g(x)\frac{d}{dx}(f(x))-f(x)\frac{d}{dx}(g(x))  }{g(x)^2}

Here  y = \frac{x}{1+x^2}

\frac{d}{dx}(\frac{x}{1+x^2})=\frac{(1+x^2)\frac{d}{dx}(x)-(x)\frac{d}{dx}(1+x^2)  }{(1+x^2)^2}

\frac{dy}{dx} = \frac{(1+x^2)(1)-(x)(0+2x)}{(1+x^2)^2}

\frac{dy}{dx} = \frac{(1+x^2) - 2x^2}{(1+x^2)^2}

\frac{dy}{dx} = \frac{1+x^2-2x^2}{(1+x^2)^2}

\frac{dy}{dx} = \frac{(1-x)^2}{(1+x^2)^2}

Hence the derivative of  \frac{x}{(1+x)^2} is   \frac{(1-x)^2}{(1+x^2)^2}

Option c

Formula used

\frac{d}{dx}(\frac{f(x)}{g(x)})=\frac{g(x)\frac{d}{dx}(f(x))-f(x)\frac{d}{dx}(g(x))  }{g(x)^2}

                 OR

\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}

Similar questions