Y=x^2-10x+64/x^2+10x+64 find the minimum value of y
Answers
Answered by
2
we have to find the minimum value of y = (x² - 10x + 64)/(x² + 10x + 64)
⇒y = (x² - 10x + 64)/(x² + 10x + 64)
⇒yx² + 10yx + 64y = x² - 10x + 64
⇒(y - 1)x² + 10x(y + 1) + 64(y - 1) = 0
now discriminant = b² - 4ac ≥ 0
⇒{10(y + 1)² - 4 × 64(y - 1) × (y - 1) ≥ 0
⇒100(y + 1)² - 256(y - 1)² ≥ 0
⇒{10(y + 1)}² - {16(y - 1)}² ≥ 0
⇒(10y + 10 - 16y + 16)(10y + 10 + 16y - 16) ≥ 0
⇒(-6y + 26)(26y - 6) ≥ 0
⇒3/13 ≤ y ≤ 13/3
therefore, minimum value of y is 3/13
also read similar questions : If(8-10x)-(13x-2)= -9 then the value of x is?
https://brainly.in/question/10736153
if x be real,find the maximum value of 7+10x-5x^2.
https://brainly.in/question/3698683
Answered by
1
Attachments:
Similar questions